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The influences of the stiffness and the mass that constitute a coupler between two
substructures of the periodic structures on mode localization are studied theoretically, and
the results are confirmed by numerical examples. The results of this study show that the
mass as well as the stiffness of the coupler has significant influences on mode localization
and weak coupling conditions. The mass of the coupler makes a periodic structure sensitive
to mode localization especially in higher modes while the stiffness does in all modes. By
introducing the large mass and the large stiffness into the coupler, an interesting
phenomenon of delocalization can be observed in some modes for which mode localization
does not occur or is very weak although structural disturbances are severe. A simple
structure consisting of two substructures, each with a lumped mass and two stiffnesses, and
a coupler is analysed theoretically. For example, structures for numerical analysis, simply
supported continuous two- and three-span beams with couplers having a rotational stiffness
and a rotational mass are considered.
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1. INTRODUCTION

The natural frequencies and mode shapes are the important dynamic characteristics of
structural systems, which are functions of the geometric configuration and the material
properties of the structures. Many engineering structures are made of identical
substructures, and many useful results can be generated by a dynamic analysis that is based
on the perfect periodicity assumption. However, in real structures, no substructures will
be perfectly identical with each other. And the presence of small irregularities in nominally
periodic structures may significantly affect their dynamic responses and lead to mode
localization. In the area of structural dynamics, the term ‘mode localization’ refers to the
vibration confinement, i.e. the magnitude of the specific part of the free vibrational mode
is large relative to the rest of the mode. This means that the vibration energy of the mode
is confined to that region.

Identifying the mode localization is very important to the design of the efficient motion
controller. For periodic structures, some irregularities such as structural damages or
manufacturing errors may produce undesirable or unpredicted mode localization. For
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flexible structural systems, natural frequencies and mode shapes must be calculated with
high precision to design the efficient motion controller. The mode shapes, however, may
be changed extremely by small disturbances in the system parameters when the mode
localization occurs drastically. This may be the reason why the performance of the
controller deteriorates. It is, therefore, very important not only to calculate the natural
frequencies and the mode shapes but also to identify the occurrence of mode localization
and its degree caused by small changes in system parameters.

In solid-state physics, the localization phenomenon of electron field in disordered solid
was first observed by Anderson [1], Anderson and Mott [2] shared the 1977 Nobel Prize
in physics for their work in this area. Early localization work in structural dynamics dealt
with the field of turbomachinery. Many works were concerned with cyclically symmetric
structures with weak coupling in order to explain the unpredicted fatigue failure of the
mistuned blades of turbomachinery [3–5]. Hodges [6] was the first to recognize that wave
localization may occur in the disordered periodic structures and leads to mode localization.
Wave localization is a phenomenon in which the vibrational energy imparted to the
structure by an external source cannot propagate to arbitrary long distances but is instead
substantially confined to a region close to the source. In his work, a series of coupled
pendulums and a vibrating string with point masses and springs, were used to show that
the degree of localization was strongly influenced by the ratio of disorder strength to
coupling strength. After that, there have been many studies on localization in periodic
engineering structures.

Bendiksen [7], and Cornwell and Bendiksen [8–10] investigated the localization
behaviour in a cyclically symmetric large space structure using analytical and numerical
methods. In these works, the sensitivities of eigenvalues and eigenvectors to small amounts
of disorder and the precise nature of coupling effects that cause localization are studied.
And a measure for the extent of localization was introduced.

Pierre and Dowell [11] employed a regular perturbation method to obtain the localized
modes of a vibrating disordered system of coupled pendula. Pierre et al. [12] studied the
mode localization of a weakly coupled disordered two-span beam using the modified
perturbation method and the experimental method. In their work, influences of the
structural disorder and coupling strength on mode localization were studied. The structural
disorder was introduced by perturbing the position of the centre support from the midpoint
of the beam. And the variation of the coupling strength between the spans was realized
by modifying the stiffness of a centre support rotational spring connecting the beam to
ground. They concluded that the degree of localization depended on the ratio of disorder
strength to coupling strength. The results are consistent with those of Hodges and
Bendiksen. Bouzit and Pierre [13] demonstrated weak and strong localization behaviours
and calculated the localization factor for a multi-span beam on randomly spaced simple
supports. The localization factor is defined by the average exponential rate at which a
structural wave decays with respect to the wave propagation distance in a disordered
periodic structure.

Lust et al. [14] studied the influences of various effects on mode localization in multispan
beams such as Timoshenko beam effects, boundary condition effects, viscous damping
effects, axial force effects, and transverse and rotational stiffness at the centre support.
Delocalization phenomena were observed by them for the first time. They concluded that
the Timoshenko beam formulation has a significant influence on mode localization for
higher modes and span length imperfection is more important than any other imperfection
parameters. The delocalization phenomenon is influenced by interaction of bending and
shear modes, beam length imperfection and transversely supported stiffness. Vakakis [15],
Vakakis et al. [16] and Zevin [17] studied mode localization for non-linear systems. Many
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other works have been conducted for mode localization and wave localization of periodic
structures [18–28].

Various structures have been considered and many methods have been proposed to
discuss the occurrence of mode localization. It is well known that under conditions of weak
internal coupling, the mode shapes undergo dramatic changes to become strongly localized
when a small disorder is introduced. In previous works, it was confirmed that the coupling
strength is closely related to the strength of coupling stiffness between substructures. To
date, however, little attention has been paid to the influences of the mass of coupler
between the spans or substructures on coupling strength and mode localization. Many
engineering structures have the form that periodically supported and stiffened. If the mass
of the stiffner is large relative to that of subparts between the stiffeners, the influences of
the mass on mode localization must be considered.

The present study is an attempt to prove that the mass, as well as the stiffness, of couplers
exerts an important influence upon the occurrence of mode localization and the weak
coupling conditions in periodic structures. To accomplish this objective, a dynamic analysis
of a simple structure with two substructures, each with a lumped mass and two stiffnesses,
and a coupler, is performed and the influences of the mass and the stiffness of the coupler
on mode localization are qualitatively discussed in the theoretical background section. In
the numerical examples, mode localization of simply supported continuous multispan
beams are analysed under various coupling conditions, and the results of the theoretical
approach are confirmed. A measure for degree of mode localization is newly defined and
used in the numerical examples, since the measure used in previous works
[12, 14, 15, 21, 27] is not suitable for the cases of multispan beams.

2. THEORETICAL BACKGROUND

In this section the characteristics of mode localization of a simple structure consisting
of two substructures and a coupler is discussed qualitatively. Figure 1 shows the structure
considered. The equation of motion of the structure may be written as
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u39= 80009. (1)

Figure 1. Simple structure constituted with two substructures and a coupler.
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Assuming {u(t)}=exp (ivnt){y} where vn is circular natural frequency and {y} is normal
mode of the system, and substituting it into equation (1), yields an eigenvalue problem
for free vibration of the structure as in equation (2).

&k1 + k3 − lm1

0
−k3

0
k2 + k4 − lm2

−k4

−k3

−k4

k3 + k4 + k5 − lm3'8y1

y2

y39= 80009. (2)

where l denotes an eigenvalue or the square of circular natural frequency of the structure.
To have non-trivial solutions, the determinant of the coefficient matrix of equation (2)
should be zero, that is,

(l(1) − l)(l(2) − l)(k3 + k4 + k5 − lm3)−
k2

4

m2
(l(1) − l)−

k2
3

m1
(l(2) − l)=0 (3)

where l(1) and l(2) are the eigenvalues of the substructure 1 and 2 respectively:

l(1) =
k1 + k3

m1
, l(2) =

k2 + k4

m2
. (4, 5)

Equation (3) is called frequency equation or characteristic equation of the structure. By
solving equation (8), the eigenvalues, ls, of the structure can be determined.

Degree of mode localization may be assessed using a ratio of free vibration amplitude
of the two substructures. To compare the free vibrational amplitudes of the two
substructures with each other and to get an equation for the ratio, the degree of freedom
of the coupler y3 in equation (2) is eliminated first and we get
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Rewriting equation (6) yields
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Subtracting equation (8) from equation (7) and rearranging it gives
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Multiplying each side of equation (9) by y2/y1 and simplifying it results in

(r− s1)(r− s2)= ar (10)
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r=
y2

y1
, s1 =−

k3

k4
, s2 =

k4

k3

m1

m2
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and

a=
m1

k3k4
(k3 + k4 + k5 − lm3)(l(1) − l(2)). (14)

The free vibration amplitude ratio r of the two substructures is to be a measure for degree
of mode localization. The left-hand side of equation (10) is a parabolic function having
roots at s1 and s2, and the right-hand side is a line which passes origin with slope a as shown
in Figure 2.

Using equation (10) and Figure 2, it is simple to discuss the influences of the stiffness
and the mass of the coupler on mode localization phenomenon. The solutions of equation
(10), r1 and r2, are determined by the functions on each side of the equation. If m1, k1 and
k3 are equal to m2, k2 and k4 respectively, then both =r1= and =r2= are unity since s1 =−1,
s2 =1 and a=0 in equation (10) and Figure 2. That is, if the two substructures are
identical to each other, then there is no localization. However, small disturbances
introduced into the structure, such as small variations in the masses and/or the stiffnesses
of the substructures, make the substructures different to each other and a mode becomes
a localized one. Especially if r1 and r2 become zero and infinite, respectively or reversely,
by small disturbances introduced into the substructures, then the corresponding mode
becomes the perfectly localized one, i.e. one of y1 and y2 is zero and the other finite.

As one can see in Figure 2, r1 and r2 are strongly affected by the slope of the line. If
a becomes positive or negative infinite by the small structural disturbances, then the degree
of mode localization increases drastically and it can be said that the structure is very
sensitive to mode localization. The influences of the stiffness and the mass of the coupler
on mode localization are discussed by using the variation of a caused by the structural
disturbance introduced into the structure. And for simple discussion, the structural
disturbancers are realized by the variation of difference, ld = l(1) − l(2), of the eigenvalues
of the two substructures, and it is assumed that ld is equal to zero when the structure is
a perfect and undisturbed one.

To compare the results of this study with those of previous works in which the effects
of the stiffness of coupler were studied, a case of m3 =0 is considered first and the effect
of the stiffness of coupler on mode localization is discussed. Neglecting the mass of coupler,
equation (14) becomes equation (15),

a=m10k3 + k4

k3k4
+

k5

k3k41ld . (15)

Figure 2. The two curves.
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From equation (15), it is obvious that if k5/k3k4�1, then the small variation in ld may lead
to the significant change in a. That implies that when the ratio of k5 to k3k4 is very large,
the small disturbance is to be a cause of drastic occurrence of mode localization since it
makes r1 and r2 become zero and infinite, respectively or reversely. These are the same
conditions that discussed in previous research for weak couplings that are the
pre-conditions for the drastic occurrence of mode localization by the structural
disturbances. The high strength of stiffness of the coupler relative to the stiffnesses of the
substructures k5�k3k4, makes the structure sensitive to mode localization and satisfies the
coupling weak condition.

By considering equation (16) including the term of lm3, an additional pre-condition for
the drastic occurrence of mode localization may be derived.

a=
m1

k3k4
(k3 + k4 + k5 − lm3)ld . (16)

As one can see in equation (16), if the condition of lm3�k3 + k4 + k5 is satisfied, the small
change in ld leads to the significant change in a and in the degree of mode localization.
For a case of lm3�k3 + k4 + k5, the term of lm3 can be neglected and reduced to the case
considered in the previous paragraph. Therefore, lm3�k3 + k4 + k5 is an additional
condition for the weak coupling and a pre-condition for the drastic occurrence of mode
localization by the structural disturbances. The large mass of the coupler and/or the large
eigenvalue of the structure make the structure sensitive to mode localization and the
coupling weak.

If one considers the mass of the coupler, another interesting characteristic of mode
localization can be observed. If the eigenvalue of the system is close to l(3) or equation
(17) is satisfied, then the structure is not sensitive to mode localization although the weak
coupling condition, such as k5�k3k4, is satisfied.

l3 l(3) (17)

where l(3) is the eigenvalue of the coupler and may be given by

l(3) =
k3 + k4 + k5

m3
. (18)

This condition may lead to a delocalization phenomenon. That is, for a mode of which
the natural frequency is close to that of the coupler, mode localization does not occur or
is very weak although structural disturbances are severe. This delocalization phenomenon
caused by the mass and stiffness of the coupler is observed in this study for the first time.

3. NUMERICAL EXAMPLES

Here, influences of the stiffness and the mass of the couplers on mode localization of
multispan beams are verified using the results of dynamic analysis by the numerical
method, and the results of the previous section are confirmed. As example structures,
simply supported continuous two- and three-span beams with couplers on supports as
shown in Figures 3 and 8 are considered. The two-span beam with a rotational stiffness
at the midsupport is the most popular structure in the field of mode localization since it
is very simple to analyse and it shows clearly many characteristics of mode localization.
In this study the two-span beam with a rotational stiffness at the midsupport is considered
also as an example and the results of the previous works were confirmed. However, if the
mass of the coupler is considered, interesting results predicted in the previous section can
be drawn. Mode localization characteristics of a general periodic multispan beam and the
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Figure 3. Simply supported continuous two-span beam with a coupler of the rotational stiffness and the mass
at the midsupport.

influence of couplers can be shown in the second example of the three-span beam. The
natural frequencies and the mode shapes of the perfect structures and the disturbed ones
are computed by the finite element method. The structure having the same geometry and
material proerties in all spans, is a perfect structure. The structural disorders or
disturbances are realized by introducing the length variation into the last span for each
example structure. The rotational stiffnesses and the rotational masses of the couplers are
represented by the non-dimensional quantities;

K�c =
Kcl
EI

, (20)

J�c =6
Jc

Ml2
(21)

where Kc and Jc are the rotational stiffness and the rotational mass of the couplers
respectively, EI is the flexural rigidity and l the span length of the perfect structures.
Degrees of mode localization are computed and compared for various coupling conditions.
A measure for degree of mode localization is newly defined and used in this section. A
measure used in previous works [12, 14, 15, 21, 27] is not convenient for measuring and
comparing the degree of mode localization for the cases of multispan beams with
generality, since it was defined using only two of the maximum amplitudes associated with
the spans.

3.1.      

In this study, to facilitate discussion for mode localization of multispan beams, a
measure for the degree of mode localization (DML) is newly defined here as

DML0
m−mc

m−1
(22)

where m is the total number of spans and mc is the number of spans in which vibrations
are confined (1Emc Em). mc can be computed by

mc =
0s

m

i=1

ȳi1
2

s
m

i=1

ȳ2
i

(23)

where ȳ1 is the absolute value of the maximum amplitude associated with the ith span.
mc is m when vibrations in all spans have the same amplitude, and unity when the vibration
is confined within only one span. As one can see, the degree of mode localization is
determined between zero and unity, 0EDMLE 1. If DML is equal to unity, then the
mode is extremely localized, and if DML is equal to zero, then the mode is not localized
at all.
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Figure 4. Localization curves showing the influence of the rotational stiffness of the coupler and the
disturbance introduced into the second span on mode localization of the simply supported two-span beams.
w, Perfect structures; q, K�c =100, Dl3 =0·5%; Q, K�c =100, Dl3 =1·0%; r, K�c =1000, Dl3 =0·5%;
R, K�c =1000, Dl3 =1·0%.

The span response ratio A�, a measure for mode localization used in previous works
[12, 14, 21] may be written as

A�= babb (24)

where a is the maximum displacement associated with the span in which the response is
smaller, and b the maximum displacement associated with the span in which the response
is larger. A mode was considered as localized when A�Q 0·1 in previous works. To be
consistent with that terminology, a mode is considered as localized when DML q0·8.

3.2.    - 

In this example, the simply supported continuous two-span beam with a coupler that
consists of the rotational stiffness, Kc , and the rotational mass, Jc , is considered. Figure 3
shows the geometry of the example structure. Finite element method is used for the free
vibration analysis of the structure. The influences of the rotational stiffness and the mass
that constitute a coupler between two spans on mode localization occurred by the length
disturbance in the second span are investigated. Excepting a rotational mass of the coupler,
the structure has the same geometry studied in previous works [12, 14]. Young’s modulus
of the beam is E=30×106 lbf/in2, the mass density r=0·28 lb/in3, and the moment of
inertia I=6·51×10−4 in4. The span lengths are l1 = l2 =12 in. in the undisturbed perfect
structures.

To study the individual influences of Kc and Jc on mode localization, six cases are
considered in each study. And to study the combined influences of Kc and Jc on mode
localization, six cases are considered. In each case, the structural disturbance is realized
by increasing the length of the second span. Degrees of mode localization are computed
by using equation (22) and plotted as functions of mode number and disturbance for the
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Figure 5. Localization curves showing the influence of the rotational mass of the coupler and the disturbances
introduced into the second span on mode localization of the simply supported two-span beams. w, Perfect
structures; q, J�c =0·1, Dl3 =0·5%; Q, J�c =0·1, Dl3 =1·0%; r, J�c =1·0, Dl3 =0·5%; R, J�c =1·0, Dl3 =1·0%.

lowest ten modes of cases in Figures 4, 5 and 6. The first ten mode shapes of the perfect
structures and the imperfect ones for selected cases are shown in Figure 7, and the first
ten natural frequencies of the perfect ones are given in Table 1.

Influences of the stiffness of the coupler on mode localization
The influences of Kc on mode localization are studied by considering six cases. In the

first three cases are K�c =100, and in the other cases K�c =1000. As structural disturbances,

Figure 6. Localization curves showing the influence of the rotational stiffness and the rotational mass of the
coupler disturbances introduced into the second span on mode localization of the simply supported two-span
beams. w, Perfect structure; q, K�c =100, J�c =0·1, Dl3 =0·5%; Q, K�c =100, J�c =0·1, Dl3 =1·0%; r,
K�c =1000, J�c =1·0, Dl3 =0·5%; R, K�c =1000, J�c =1·0, Dl3 =1·0%.
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the second span length increments of Dl2 =0·0%, Dl2 =0·5% and Dl2 =1·0% are
considered in each K�c . If Dl2 =0·0%, the structure is perfect.

Localization curves shown in Figure 4 indicate the typical localization behaviour and
influences of K�c on mode localization. Degrees of mode localization increase with
increasing disturbance, and with increasing K�c .

Influences of the mass of the coupler on mode localization
Studies on the influences of Jc are conducted by considering cases for J�c =0·1 and

J�c =1·0. In each case the span length increments of Dl2 =0·0%, Dl2 =0·5% and
Dl2 =1·0% are considered where Dl2 =0·0% is for the cases of perfect structures.

Figure 5 presents localization curves for lowest ten modes of cases, which show the
influence of J�c on mode localization. Influence of J�c differs from that of K�c . Degrees of
mode localization increase with increasing length disturbance in the second span, with
increasing mode number, and with increasing the mass of the coupler. It is interesting that
degrees of mode localization are very small in lower modes, but they are significant in
higher modes. As predicted in the section of theoretical background, this behaviour
becomes more pronounced with increasing rotational mass of the coupler. The coupler of
large mass makes the coupling weak and the structure sensitive to mode localization with
increasing mode number.

Combined influences of the stiffness and the mass of the coupler on mode localization
The combined influences of the stiffness and the mass of the coupler on mode

localization are also studied by considering cases of K�c =100 and J�c =0·1, and K�c =1000
and J�c =1·0. In each case the span length disturbances of Dl2 =0·0%, Dl2 =0·5% and
Dl2 =1·0% are also considered.

Localization curves plotted in Figure 6 show the combined influences of K�c and J�c on
mode localization. Degrees of mode localization decrease with increasing mode number
until the fifth mode, but after that mode they increase abruptly with increasing mode
number. The fifth mode is a delocalized one, and its frequency is close to the coupler’s
frequency 1780 Hz calculated by

vc =
1
2pXKc

Jc
, (25)

where vc is the coupler’s frequency, and neglecting k3 and k4 in equation (18), vc is
equivalent to l(3) in the theoretical background section.

The delocalization phenomenon is more drastic in cases of K�c =1000 and J�c =1·0. The
modes that are close to the frequency of the coupler or on it are delocalized, and for those
modes mode localization does not occur or is very weak although the structural
disturbance is severe. The localization behaviour is governed by K�c for lower modes but
by J�c for higher modes on condition that the modes are far from the localized ones. These
results are consistent with the results of the previous section on theoretical background.

3.3.    - 

In this example, the simply supported continuous three-span beam with couplers
consisting of the rotational stiffness and the mass is considered, and finite element method
is used for the free vibration analysis of the perfect structures and the imperfect ones. The
influences of the rotational stiffness and the mass on mode localization are studied also.
Figure 8 shows the geometry of the example structure. As one can see, each span has
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T 1

First ten natural frequencies (Hz) of the simply supported continuous two-span beams with
various coupling conditions

Stiffness effects Mass effects Mass and stiffness effects
ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV
K�c =102 K�c =103 K�c =0·0 K�c =0·0 K�c =102 K�c =103

Mode J�c =0·0 J�c =0·0 J�c =0·1 J�c =1·0 J�c =0·1 J�c =1·0

1 341·0 352·3 208·7 122·8 340·5 352·3
2 353·7 353·7 353·7 353·7 353·7 353·7
3 1106·1 1140·5 638·8 391·2 1088·0 1137·5
4 1145·0 1145·0 1145·0 1145·0 1145·0 1145·0
5 2308·0 2375·3 1274·0 1156·3 1868·7 1790·3
6 2384·6 2384·6 2384·6 2384·6 2384·6 2384·6
7 3944·0 4051·9 2441·9 2390·0 2508·1 2396·6
8 4067·6 4067·6 4067·6 4067·6 4067·6 4067·6
9 6009·2 6163·5 4099·8 4070·7 4107·5 4071·4

10 6187·1 6187·1 6187·1 6187·1 6187·1 6187·1

rotational stiffnesses, 0·5Kc , and masses, 0·5Jc , at both ends as coupler. Material properties
of the beam are the same with those of the previous example structure. For perfect
structures, span lengths are l1 = l2 = l3 =12 in.

The studies to determine the individual influences and the combined influences of Kc and
Jc on the mode localization of the three-span beam are conducted by considering several
cases. The disturbances are realized by introducing the span length variations into the third
span and classified into decreasing case and increasing case since mode localization behaves
with different manner in each case. The length variations of only the third span are
considered since the influences show the same characteristics in all cases although a
localization curve has a different shape according to the span number into which
disturbances are introduced. Degrees of mode localization of the first twenty modes of each
case are computed by equation (22) and plotted as functions of mode number and
disturbance for the lowest ten modes of cases in Figures 9, 10 and 11. The first ten mode
shapes are represented in Figure 12 for selected shortening cases, and in Figure 13 for
selected lengthening ones. The natural frequencies of the first twenty modes of the perfect
structures are presented in Table 2.

Influences of the stiffness of the couplers on mode localization
To study the influences of Kc on mode localization, the cases of K�c =100 and K�c =1000

are considered. The disturbances considered in the case of K�c =100 are Dl3 =−2·5% and
Dl3 =−5·0% for shortening cases, and Dl3 =2·5% and Dl3 =5·0% for lengthening cases.
The disturbances considered in the case of K�c =1000 are Dl3 =−2·5% and Dl3 =−0·5%
for shortening cases, and Dl3 =0·25% and Dl3 =0·5% for lengthening cases.

Figure 8. Simply supported continuous three-span beam with couplers of the rotational stiffness and the mass
at each support.
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Figure 9. Localization curves showing the influence of the rotational stiffness of the couplers and the
disturbances introduced into the third span on mode localization of the simply supported continuous three-span
beams. The cases of K�c =100 and K�c =1000, and shortening and lengthening are considered. (a) K�c =100 and
shortening cases. W, Perfect structure; q, Dl3 =−2·5%; r, Dl3 =−5·0%; (b) K�c =100 and lengthening cases.
W, Perfect structure; q, Dl3 =2·5%; r, Dl3 =5·0%; (c) K�c =1000 and shortening casesW, Perfect structure;
q, Dl3 =−0·25%; r, Dl3 =−0·5%; (d) K�c =1000 and lengthening cases. W, Perfect structure; q, Dl3 =0·25%;
r, Dl3 =0·5%.

The localization curves depicted in Figure 9 show the influences of the stiffness of the
couplers and the length disturbances in the third span on mode localization. All the modes
can be classified into three localization groups by their degrees of mode localization, and
every third mode belongs to a localization group, which is expected since the example
structure has three repeated segments. The first localization group is not localized at all,
but the rest of the groups are localized to some degree although the structure is perfect.
Introducing length disturbances into the third span, each localization group show its own
characteristics of mode localization. In addition, the shortening cases and the lengthening
cases show the different behavior of mode localization in each localization group. The
grouping characteristic is similar to an example of reference [21], where mode localization
of a two-span beam was studied using the classical measure for mode localization and the
wave approach, and it was shown that the localization curve has two branches and every
second mode belongs to a branch.
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Considering the case of K�c =100 and shortening shown in Figure 9(a), degrees of mode
localization of the first and third localization group increase with increasing disturbance,
and the shifts in degrees of mode localization of the third localization group is more severe.
However, for the second localization group, degrees of mode localization decrease and
increase according to the strengths of the disturbance. This is another delocalization
phenomenon observed in reference [14] where it is shown that the delocalization can occur
for specific combinations of the rotational stiffness and the length disturbance. In the
lengthening cases shown in Figure 9(b), degrees of mode localization of the first
localization group increase most significantly with increasing strength of disturbance. The
shifts of degrees of mode localization of the second and third localization group are much
smaller than that of the first localization group. Figure 9(c, d) shows behaviours of degrees
of mode localization for the cases of K�c =1000. The span length variations of
Dl3 =20·25% and Dl3 =20·5% are considered as the disturbances. The behaviour of

Figure 10. Localization curves showing the influences of the rotational mass of the couplers and the
disturbances introduced into the third span on mode localization of the simply supported continuous three-span
beams. The cases of J�c =0·1 and J�c =1·0, and shortening and lengthening are considered. (a) J�c =0·1 and
shortening cases. W, Perfect structure; q, Dl3 =−0·25%; r, Dl3 =−0·5%; (b) J�c =0·1 and lengthening cases.
W, Perfect structure; q, Dl3 =0·25%; r, Dl3 =0·5%; (c) J�c =1·0 and shortening casesW, Perfect structure; q,
Dl3 =−0·25%; r, Dl3 =−0·5%; (d) J�c =1·0 and lengthening cases. W, Perfect structure; q, Dl3 =0·25%; r,
Dl3 =0·5%.
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Figure 11. Localization curves showing the combined influence of the rotational mass and the rotational mass
of the couplers and the disturbances introduced into the third span on mode localization of the simply supported
continuous three-span beams. The cases of K�c =100 and J�c =0·1, and K�c =1000 and J�c =1·0, and shortening
and lengthening are considered. (a) K�c =100, J�c =0·1 and shortening cases. W, Perfect structure; q,
Dl3 =−0·25%; r, Dl3 =−0·5%; (b) K�c =100, J�c =0·1 and lengthening cases. W, Perfect structure; q,
Dl3 =0·25%; r, Dl3 =0·5%; (c) K�c =1000, J�c =1·0 and shortening cases. W, Perfect structure; q, Dl3 =0·25%;
r, Dl3 =0·5%; (d) K�c =1000, J�c =1·0 and lengthening cases. W, Perfect structure; q, Dl3 =−0·25%; r,
Dl3 =−0·5%.

mode localization is similar to that of K�c =100, but more sensitive to the disturbances than
that. Considering that, one can say that the high strength of Kc makes the coupling weak,
and makes the system sensitive to mode localization.

Influences of the mass of the couplers on mode localization
The influences of the rotational mass of the couplers on mode localization is also studied

by considering the cases of J�c =0·1 and J�c =1·0, and several span length disturbances.
Degrees of mode localization of the first twenty modes for the perfect structures and the
disturbed ones are measured. Disturbances considered are Dl3 =−0·25% and Dl3 =0·5%
for lengthening cases.

Localization curves presented in Figure 10 show the typical influences of the mass of
the couplers. Although the shapes of localization curves are seen to be different from those
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T 2

First twenty natural frequencies (Hz) of the simply supported continuous two-span beams with
various coupling conditions

Stiffness effects Mass effects Mass and stiffness effects
ZXXXXCXXXXV ZXXXXCXXXV ZXXXXCXXXXV
K�c =102 K�c =103 K�c =0·0 K�c =0·0 K�c =102 K�c =103

Mode J�c =0·0 J�c =0·0 J�c =0·1 J�c =1·0 J�c =0·1 J�c =1·0

1 477·7 509·2 195·0 102·3 475·3 508·9
2 486·2 510·2 250·4 127·5 484·4 510·0
3 504·0 512·3 373·3 171·2 503·3 512·2
4 1320·6 1402·1 534·2 192·0 1256·4 1385·9
5 1343·0 1404·9 683·8 526·6 1289·2 1392·4
6 1389·2 1410·4 828·6 550·7 1365·2 1406·0
7 2593·7 2743·8 897·2 561·8 1837·6 1785·2
8 2635·4 2749·2 1467·8 1417·7 1902·1 1794·3
9 2720·8 2759·9 1559·9 1426·8 2017·8 1811·7

10 4291·5 4524·7 1601·5 1431·2 2075·4 1820·2
11 4357·0 4533·4 2790·0 2767·6 2808·7 2769·2
12 4490·4 4551·0 2837·5 2772·2 2885·2 2777·0
13 6411·2 6738·8 2860·6 2774·4 2920·0 2780·8
14 6504·3 6751·7 4574·1 4561·1 4576·8 4561·4
15 6692·4 6777·5 4602·4 4563·9 4610·1 4564·7
16 8948·2 9378·7 4616·4 4565·3 4626·5 4566·3
17 9071·9 9396·5 6800·0 6791·5 6800·7 6791·5
18 9320·3 9432·2 6818·7 6793·3 6820·8 6793·5
19 11896·5 12436·6 6828·1 6794·2 6830·8 6794·5
20 12053·3 12460·0 9456·8 9450·8 9457·1 9450·8

of the two span beam example, the overall behaviours are similar to those. As predicted
in the theoretical background section, the shifts in degrees of mode localization increase
with increasing mode number, with increasing mass of couplers, and with increasnig
strength of disturbance.

Additionally, two interesting aspects can be observed. The first is that the rule of
classifying localization groups is broken in lowest modes. The other is that mode
localization has a saturation point and mode localization is not sensitive to the structural
disturbance in the vicinity of that point. Considering Figure 10(c, d), some modes are
saturated at DML=1·0 and others at DML1 0·5 as the strength of the disturbance
increases. In the author’s experience, the saturation of mode localization can be observed
in all cases with an increase in the strength of disturbance, and it is a typical characteristic
of mode localization of weakly coupled multispan beams.

Combined influences of the stiffness and the mass of the couplers on mode localization
Additional studies on the combined influences of Kc and Jc are conducted by considering

K�c =100 and J�c =0·1, and K�c =1000 and J�c =1·0 under the span length disturbances of
Dl3 =20·25% and Dl3 =20·5%.

Localization curves depicted in Figure 11 show the influences of the stiffness and the
mass at the same time. The overall behaviours are similar to those of the two-span beam
example and agree with the theoretical background section. The stiffness of high strength
makes the system sensitive to localization for lower modes and the large mass makes the
system sensitive for higher modes. Delocalized modes by the mass of the couplers are also
observed. As shown in the two-span beam example, the delocalized modes are also close
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to the coupler’s frequency 1780 Hz. The rule of classifying localization groups can be
adapted to only the modes far from the delocalized modes, since the delocalized modes
do not experience the mode localization.

4. CONCLUDING REMARKS

In this work the influences of the stiffness and the mass of the coupler on mode
localization have been studied by both the theoretical and numerical approaches and
consistent results have been obtained.

In the theoretical study, a simple structure consisting of two substructures and a coupler
was considered, and an equation for the ratio of free vibration amplitude of each
substructure was used for qualitative discussion of the influences of the stiffness and the
mass of a coupler on mode localization. In the numerical studies, the simply supported
continuous two- and three-span beams with the couplers on supports were considered, and
the influences of the rotational stiffness and the rotational mass of the couplers on mode
localization were investigated. The two-span beam and three-span beam examples gave the
results for the influences, although the localization curves of the examples were seen to
be different from each other, and the results were consistent with those of the theoretical
study.

Some important conclusions drawn in the course of this work can be summarized as
follows:

(1) Degree of mode localization varies with the disturbances introduced into the
structures.

(2) The sensitivity of the periodic structures to mode localization increases in all modes
with increasing stiffness of couplers.

(3) Considering the mass of couplers, the sensitivity of the periodic structures to mode
localization increases with increasing mass of couplers and with increasing mode
number.

(4) The mass and stiffness of couplers causes a delocalization phenomenon for some
modes for which mode localization does not occur or is very weak although
structural changes are severe and the delocalization frequency is equal to that of a
coupler.

(5) Introducing the large stiffness and the mass into the coupler, the behaviour of mode
localization is governed by the stiffness for the lower modes but by the mass for the
higher modes, and the delocalized ones can be observed between them.

The first two results agree with those of previous research [6–14] for occurrence of mode
localization and for weak coupling conditions. The last three results are observed in this
study for the first time. One of the most famous preconditions for dramatic occurrence
of mode localization is the weak coupling induced by the stiffness of the coupler of the
periodic structures. However, the mass as well as the stiffness of the couplers has important
influences on mode localization. As shown in the study, for modes of which the natural
frequencies are higher than delocalization frequencies or coupler frequencies, the
behaviour of mode localization is governed by the mass of couplers although the mass of
couplers is not so large. Two types of delocalization phenomena observed in this study
are very interesting characteristics of mode localization. The first type of delocalization,
observed by Lust et al. [14], is caused by the specific combination of the rotational stiffness
and the span length variation. The other one, introduced by ourselves in this work, is
caused by the stiffnesses and the masses of the couplers.
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It is very interesting that the localization curves of a weakly coupled multispan beam
consisting of three or more spans show different manner according to the span number
into which disturbances are introduced. However, a detailed discussion for that is not
contained in this work since it is beyond the scope of this study. It will be presented in
a sequel to this paper by the authors.
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